Website is intended for physicians
Search:
Всего найдено: 10

Abstract

Background: advantages of endobiliary photodynamic therapy (PDT) described in the first part of review, namely: the safety of the intervention, the predictability and reproducibility of the effect, the absence of rough scarring of bile ducts, the possibility of repeating of procedures, affordability financially and economically - make this technology preferred among others locoregional effects in patients with hilus cholangiocarcinoma.

Aim: was to get a clinical specialist' view of endobiliary PDT as the perspective method: to describe dynamics of photosensitizer (PS) accumulation by tumor in vivo, to describe tools for delivering light into the lumen of bile ducts and intervention technique, to describe characteristics of light dosimetry, and to analyze immediate and long-term results of intra-duct photo exposure.

Material and methods: 66 domestic and foreign literary sources were analyzed.

Conclusion: endobiliary photodynamic therapy is a safe and effective method of locoregional treatment of patients with hilar cholangiocarcinoma, which significantly increases the duration and improves the quality of life of previously considered incurable patients.

 

References 

1.     Akopov AL, Rusanov AA, Papayan GV, Kazakov NV, Gerasin AV, Urtenova MA. Endobronchial photodynamic therapy under fluorescence control: Photodynamic theranostics. Photodiagnosis Photodyn Ther. 2017 Sep; 19: 7377.

2.     Goryainov SA. et al. Intraoperative fluorescence diagnostics and laser spectroscopy with repeated operations for brain gliomas. Questions of Neurosurgery named after NN Burdenko. 2014; 78 (2): 22-31 [In Russ].

3.     Yaroslavtseva-Isaeva EV, Kaplan MA, Kapinus VN, Spichenkova IS, Sokol N.I. Fluorescent diagnosis of malignant tumors of the skin with photosensitizers of chlorine series. Biomedical Photonics. 2018; 7(1): 13-20 [In Russ].

4.     Chissov VI, Sokolov VV, Bulgakova NN, Filonenko EV. Fluorescent endoscopy, dermatoscopy, spectrophotometry in the diagnosis of malignant tumors of main localizations. Russian Biotherapeutic Journal. 2003; 5(4): 42-56 [In Russ].

5.     Likhvantseva VG, Osipova EA, Loschenov VB, Kuzmin SG, Vorozhtsov GN. The method of differential diagnosis of eyelid skin. Patent RF № RU 2350262 C2. 2009. [In Russ].

6.     Rusakov IG, Teplov AA, Ulyanov RV, Filonenko EV. Fluorescent cystoscopy in patients with non-muscularinvasive bladder cancer. Biomedical photonics. 2015; 3: 29-35 [In Russ].

7.     Zykov AE. Laser fluorescence diagnostics and photodynamic therapy for cervical disease. Abstract of dissertation for the degree of candidate of medical sciences , Moscow 2011; 21 [In Russ].

8.     Denisova ED, Apolikhina IA, Bulgakova NN. Fluorescence diagnostics and photodynamic therapy of genital warts. Obstetrics and Gynecology. 2011; 8: 112-116 [In Russ].

9.     Silvia Affo, Le-Xing Yu, Robert F Schwabe. The Role of Cancer-Associated Fibroblasts and Fibrosis in Liver Cancer. Ann Rev Pathol. 2017 Jan 24; 12: 153-186.

10.   Namikawa T, Yatabe T, Inoue K, Shuin T, Hanazaki K. Clinical applications of 5-aminolevulinic acid-mediated fluorescence for gastric cancer. World J Gastroenterol. 2015 Aug 7; 21(29): 8769-8775.

11.   Kishi K, Fujiwara Y Yano M, Motoori M, Sugimura K, Takahashi H, Ohue M, Sakon M (2016) Usefulness of diagnostic laparoscopy with 5-aminolevulinic acid (ALA)-mediated photodynamic diagnosis for the detection of peritoneal micrometastasis in advanced gastric cancer after chemotherapy. Surg Today. 2016 Dec;46 (12): 1427-1434.

12.   Shiryayev AA, Musaev GKh, Loschenov MV, Borodkin AV, Levkin VV, Okhotnikova NL, Volkov VV, Makarov VI, Loschenov VB. Fluorescent diagnosis and photodynamic therapy in combined treatment of cholangiocellular cancer. Biomedical Photonics. 2016; 5(4): 15-24 [In Russ].

13.   Goldman L. The biomedical laser: technology and clinical application. N.Y: Springer-Verlag, 1981; 342.

14.   Ivanov AV. Fiber optics. M .: Cyrus Company Systems, 1999; 342 [In Russ].

15.   Isaev SK Physics of fiber-optic devices. M .: MSU, 1986; 219 [In Russ].

16.   Gower J. Optical Communication Systems: Trans from English. M .: Radio and communication, 1989; 504.

17.   Thielen Patrick Woodtli Alain Light diffusing device for photodynamic treatment of organs United States Patent 6315775 Medlight S.A. (Ecublens, CH) 11/13/2001.

18.   Korobeynikov AG, Gatchin YuA, Dukelsky KV, Ter-Nersesyants E.V. Technological methods for reducing the level of optical losses in microstructured optical fibers. Scientific and Technical Journal of Information Technologies, Mechanics and Optics Scientific and Technical Journal of Information Technologies, Mechanics and Optics 2014; 1 (89) [In Russ].

19.   Lee Tae Yoon , Cheon Young Koog, Shim Chan Sup. Photodynamic Therapy in Patients with Advanced Hilar Cholangiocarcinoma: Percutaneous Cholangioscopic Versus Peroral Transpapillary Approach. Photomed Laser Surg. 2016 Apr;34(4):150-6.

20.   Frantsev DYu, Shorikov MA, Lapteva MG. Methodical aspects of percutaneous endobiliary photodynamic therapy in hilar cholangiocarcinoma inoperable patients. Actual problems of hepatopancreobiliary surgery. Materials of the XXIV International Congress of the Association of Hepa

Abstract

Aim: was to identify possibilities of MRI with contrast enhancement in assessment of differentiation

grade of liver metastases of neuroendocrine tumors (NET).

Materials and methods: 103 patents with morphologically confirmed liver metastases of NET were enrolled in the study. All patients underwent abdominal contrast-enhanced MRI. A total of 241 lesions were assessed. In the region of interest, which corresponded to the rounded locus in solid port-contrast T1-weighted images. Obtained data were compared in groups of different grade of tumor tissues differentiation; the correlation of MRI parameters with Ki67 was also evaluated.

Results: study demonstrated that Grade (G) 1 of NET metastases are characterized by a more active accumulation of MR contrast agent (MRCA) and a higher SI in arterial (p=0,0002, p=0,0003, respectively) and venous (p=0,0003, p=0,0001, respectively) phases of contrast enhancement compared with G2 and G3. Also, well-differentiated NETs had higher SI in the delayed phase of contrast enhancement (p = 0,0038) and the more rapid wash-out of MRCA (p=0,0314). The Ki67 index inversely correlated with the degree of MRCA accumulation in arterial and venous phases of MRI with contrast enhancement. Revealed consistency may be useful for guided tissue sampling in biopsy and identification of the grade "migration" phenomenon, which will allow competently and timely choose/change treatment modality.

 

References

1.     Yao JC, Hassan M, Phan A et. al. One hundred years after ‘carcinoid’: Epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. J. Clin. Oncol. 2008; 26(18): 3063-3072.

2.     Basuroy R, Srirajaskanthan R, Ramage JK. A multimodal approach to the management of neuroendocrine tumour liver metastases. Int. J. Hepatol. 2012; 81(9):80-93.

3.     Orel NF, Gorbunova VA, Delektorskaya VV et. al. Practical recommendations for treatment of neuroendocrine tumors of gastrointestinal tract and pancreas. Prakticheskie rekomendatsii RUSSCO. 2018; 12 (1): 430-456 [In Russ].

4.     Bosman FT, Carneiro F, Hruban RH. WHO Classification of Tumours of the Digestive System 4th ed. Lyon. IARC.2010.

5.     Rindi G, Falconi M, Klersy C et. al. TNM staging of neoplasms of the endocrine pancreas: results from a large international cohort study. J Natl Cancer Inst. 2012; 104 (4): 764-777.

6.     Lloyd RV, Osamura RY Kloppel G. WHO Classification of Tumours of Endocrine Organs 4th ed. Lyon. IARC, 2017.

7.      Basturk O, Tang L, Hruban RH et. al. Poorly differentiated neuroendocrine carcinomas of the pancreas: a clinicopathologic analysis of 44 cases. Am J Surg Pathol. 2014; (6): 437-447.

8.     Tang LH, Basturk O, Sue JJ. A Practical Approach to the Classification of WHO Grade 3 (G3) Well-differentiated Neuroendocrine Tumor (WD-NET) and Poorly Differentiated Neuroendocrine Carcinoma (PD-NEC) of the Pancreas. Am J Surg Pathol. 2016; 40: 1192-1202.

9.     Iwazawa J, Onue S. Transarterial chemoembolization with miriplatinlipiodol emulsion for neuroendocrine metastases of the liver. World J. Radiol. 2010; 12: 468-471.

10.   Basturk O, Yang Z, Tang LH et. al. The high-grade (WHO G3) pancreatic neuroendocrine tumor category is morphologically and biologically heterogenous and includes both well differentiated and poorly differentiated neoplasms. Am J Surg Pathol. 2015; 39: 683-690.

11.   Khan MS, Luong TV, Watkins J et. al. A comparison of Ki-67 and mitotic count as prognostic markers for metastatic pancreatic and midgut neuroendocrine neoplasms. Br J Cancer. 2013; 108: 1838-45.

12.   Ueda Y, Toyama H, Fukumoto T et. al. Prognosis of Patients with Neuroendocrine Neoplasms of the Pancreas According to the World Health Organization 2017 Classification. J. pancreas. 2017; 12: 216-220.

13.   Pavel RM, Baudin E, Couvelard A et. al. ENETS Consensus Guidelines for the management of patients with liver and other distant metastases from neuroendocrine neoplasms of foregut, midgut, hindgut, and unknown primary. Neuroendocrinology. 2012; 95 (2): 157-176.

14.   Cuneo KC, Chenevert TL, Ben-Josef E et. al. A pilot study of diffusion-weighted MRI in patients undergoing neoadjuvant chemoradiation for pancreatic cancer. Transl. Oncol. 2014; 7 (5): 644-649.

15.   Oberg K. Neuroendocrine tumors of the digestive tract: impact of new classifications and new agents on therapeutic approaches. Curr Opin Oncol. 2012; 24 (4): 433-440.

16.   Kulke MH, Shah MH, Benson AB, Neuroendocrine tumors, version 1.2015. J Natl Compr Canc Netw. 2015; 13 (1): 78-108.

17.   Belousova EL (Amosova EL), Karmazanovskiy GG, Kubyshkin VA et. al. CT signs, allowing to determine the optimal treatment tactics for neuroendocrine pancreatic tumors. Meditsinskaya vizualizatsiya. 2015; 5: 73-82 [In Russ].

18.   Besa C, Ward S, Cui Y et. al. Neuroendocrine Liver Metastases: Value of Apparent Diffusion Coefficient and Enhancement Ratios for Characterization of Histopathologic Grade. J Magn Reson Imaging. 2016; 44 (6): 1432-1441.

19.   Guo CG, Ren S, Chen X et. al. Pancreatic neuroendocrine tumor: prediction of the tumor grade using magnetic resonance imaging findings and texture analysis with 3-T magnetic resonance. Cancer Manag Res. 2019; 11:1933-1944.

20.   Hussain SM, Liver MRI. Correlation with other imaging modalities and histopathology. 2007.

 

Abstract

Background: hilar cholangiocarcinoma (Klatskin tumor) is a rare and severe hepatobiliary malignancy of proximal bile ducts with dismal prognosis, slow periductal growth, late metastatic spread and is mostly fatal due to local complications. Surgical resection is considered to be the only curative method to the date, but its results aren't satisfactory as the majority of patients (70-80%) aren't suitable surgical candidates due to a large tumor extent in local hilar area. Moreover, local recurrence rate reaches 80% over 7 years. Thus endobiliary loco-regional technologies have been proposed, one of which is a photodynamic therapy (PDT).

Aim: was to provide provide a preclinical rationale of PDT in Klatskin tumor patients: to describe principles and mechanisms of the method and summary experimental studies data; this can prepare the reader for the second part of the review, which is based on the analysis of clinical studies and can give practical orientation.

Material and methods: 63 domestic and foreign literature sources were analyzed.

Conclusion: endobiliary photodynamic therapy showed its safety and efficacy in many experimental studies and can successfully be applied in clinical practice. 

 

 

References

1.     Uzdenskii AB. Cellular-molecular mechanisms of photodynamic therapy 2010, St. Petersburg «Science» p.3-4, 13-14, 327. [In Russ].

2.     Tsyb AF, et al. Photodynamic therapy, «Medical Information Agency» 192 p., 2009, Moscow [In Russ].

3.     Reshetnikov AV. Photosensitizers in modern clinical practice (review). Materials of the scientific and practical conference of otorhinolaryngologists of the Central Federal District of the Russian Federation «Laser technologies in otorhinolaryngology» ed. V.G. Zenger and A.N. Nasedkina, Tula September 26-28, 2007 [In Russ].

4.     Davies MJ. Singlet oxygen-mediated damage to proteins and its consequences. Biochem Biophys Res Commun. 2003 Jun 6; 305(3): 761-770.

5.     Girotti AW. Photodynamic lipid peroxidation in biological systems. Photochem Photobiol. 1990 Apr; 51(4): 497-509.

6.     Hsieh YJ, Wu CC, Chang CJ, Yu JS. Subcellular localization of Photofrin determines the death phenotype of human epidermoid carcinoma A431 cells triggered by photodynamic therapy: when plasma membranes are the main targets. J Cell Physiol. 2003 Mar;194(3): 363-375.

7.     Berg K, Moan J. Lysosomes as photochemical targets. Int J Cancer. 1994 Dec 15; 59 (6): 814-822.

8.     Berg K, Moan J. Lysosomes and microtubules as targets for photochemotherapy of cancer. Photochem Photobiol. 1997 Mar; 65(3): 403-409.

9.     Chernyak BV, Izyumov DS, Lyamzaev KG, et al. Production of reactive oxygen species in mitochondria of HeLa cells under oxidative stress. Biochim Biophys Acta. 2006 May- Jun;1757 (5-6): 525-534. Epub 2006 Apr 7.

10.   Zhang LJ, O'Shea D, Zhang CY, et al. Evaluation of a bacteriochlorin-based photosensitizer's anti-tumor effect in vitro and in vivo. J Cancer Res Clin Oncol. 2015 Nov; 141(11): 1921-1930.

11.   Zhang LJ, Yan YJ, Liao PY, et al. Synthesis and antitumor activity evaluation of a novel porphyrin derivative for photodynamic therapy in vitro and in vivo. Tumour Biol. 2016 May; 37(5): 6923-6933.

12.   Shi R, Li C, Jiang Z, et al. Preclinical Study of Antineoplastic Sinoporphyrin Sodium-PDT via In Vitro and In Vivo Models. Molecules. 2017 Jan 11; 22(1). PII: E112.

13.   Korbelik M, Krosl G, Olive PL, Chaplin DJ. Distribution of Photofrin between tumour cells and tumour associated macrophages. Br. J. Cancer (I991), 64, 508512.

14.   Korbelik M, Krosl G. Photofrin accumulation in malignant and host cell populations of various tumours. British Journal of Cancer (1996) 73, 506-513.

15.   Sharma S, Jajoo A, Dube A. 5-Aminolevulinic acid-induced protoporphyrin-IX accumulation and associated phototoxicity in macrophages and oral cancer cell lines. J Photochem Photobiol B. 2007 Sep 25; 88(2-3): 156-162. Epub 2007 Aug 2.

16.   Agostinis P, Berg K, Cengel KA, et al. Photodynamic therapy of cancer: an update. CA Cancer J Clin. 2011 Jul-Aug;61(4): 250-281. doi: 10.3322/caac.20114. Epub 2011 May 26.

17.   Moan J, Peng Q, Sorensen R, et al. The biophysical foundations of photodynamic therapy. Endoscopy. 1998 May; 30 (4): 387-391.

18.   Profio AE, Doiron DR. Transport of light in tissue in photodynamic therapy. Photochem Photobiol 1987; 46: 591-599.

19.   Shackley DC, Whitehurst C, Moore JV, et al. Light penetration in bladder tissue: implication for the intravescical photodynamic therapy of bladder tumours. BJU Int 2000 l86: 638-643.

20.   Melo CA, Lima AL, Brasil IR, et al. Characterization of light penetration in rat tissues. J Clin Laser Med Surg. 2001 Aug; 19 (4): 175-179.

21.   Silvia Affo, Le-Xing Yu, Robert F Schwabe. The Role of Cancer-Associated Fibroblasts and Fibrosis in Liver Cancer. Annu Rev Pathol. 2017 Jan 24; 12: 153-186.

22.   Parsa P, Jacques SL, Nishioka NS. Optical properties of rat liver between 350 and 2200 nm. Appl Opt. 1989 Jun 15; 28(12): 2325-30.

23.   Brancaleon L, Moseley H. Laser and non-laser light sources for photodynamic therapy. Lasers Med Sci. 2002; 17: 173-186.

24.   Stranadko EF, Armichev AV, Geynits AV. Light sources for photodynamic therapy. Laser medicine, - 2011. - Vol. 15, no. 3: 63-69. [In Russ].

25.   Heiskanen V, Hamblin MR. Photobiomodulation: lasers vs. light emitting diodes? Photochem Photobiol Sci. 2018 Aug 8; 17(8): 1003-1017.

26.   Lima AC, et al. Low-Level Laser and Light-Emitting Diode Therapy for Pain Control in Hyperglycemic and Normoglycemic Patients Who Underwent Coronary Bypass Surgery with Internal Mammary Artery Grafts: A Randomized, Double-Blind Study with Follow-Up, Pho- tomed. Laser Surg., 2016, 34(6), 244-251. doi: 10.1089/pho.2015.4049

27.   Lima AC, et al. Photobiomodulation (Laser and LED) on Sternotomy Healing in Hyperglycemic and Normoglycemic Patients Who Underwent Coronary Bypass Surgery with Internal Mammary Artery Grafts: A Randomized, Double-Blind Study with Follow-Up, Photomed. Laser Surg., 2017, 35(1), 24-31. doi: 10.1089/pho.2016.4143

28.   Ammar TA. Monochromatic Infrared Photo Energy versus Low Level Laser Therapy in Patients with Knee Osteoarthritis, J. Lasers Med. Sci., 2014, 5(4), 176-182.

29.   Freitas AC, et al. Chemotherapy-induced oral mucositis: effect of LED and laser phototherapy treatment protocols, Photomed. Laser Surg., 2014, 32(2), 81-87.

30.   Reeds KB, Ridgway TD, Higbee RG, Lucroy MD. Non-coherent light for photodynamic therapy of superficial tumours in animals. Vet Comp Oncol. 2004 Sep;2(3):157- 63. doi: 10.1111/j.1476-5810.2004.00052.x.

31.   Henderson BW, Dougherty TJ. How does photodynamic therapy work? Photochem. Photobiol. 1992; 55 (1): 145-157

32.   Dougherty TJ, Gomer CJ, Henderson BW, et al. Photodynamic therapy. J. Natl. Cancer Inst. 1998; 90(12): 889-905.

33.   Dougherty TJ. An update on photodynamic therapy applications. J Clin Laser Med Surg. 2002 Feb; 20(1): 3-7.

34.   Chen B, Pogue BW, Goodwin IA. Blood flow dynamics after photodynamic therapy with verteporfin in the RIF-1 tumor. Radiat. Res.- 2003.- №160.- Р452-459.

35.   Gollnick SO, Owczarczak B, Maier P. Photodynamic therapy and anti-tumor immunity. Lasers Surg Med. 2006 Jun; 38(5): 509-515.

36.   Gollnick SO, Brackett CM. Enhancement of antitumor immunity by photodynamic therapy. Immunol Res. 2010 Mar; 46(1-3): 216-226.

37.   Pizova K, Tomankova K, Daskova A, et al. Photodynamic therapy for enhancing antitumour immunity. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2012 Jun; 156(2): 93-102.

38.   Siddiqui SH, Awan KH, Javed F. Bactericidal efficacy of photodynamic therapy against Enterococcus faecalis in infected root canals: a systematic literature review. Photodiagnosis Photodyn Ther. 2013 Dec; 10(4): 632-643.

39.   Diniz IM, Teixeira KI, Araujo PV, et al. Evaluation of antibacterial photodynamic therapy effects on human dental pulp cell cultures. Photodiagnosis Photodyn Ther. 2014 Sep; 11(3): 300-306.

40.   Javed F, Samaranayake LP, Romanos GE. Treatment of oral fungal infections using antimicrobial photodynamic therapy: a systematic review of currently available evidence. Photochem Photobiol Sci. 2014 May; 13(5): 726-734.

41.   Fumes AC, da Silva Telles PD, Corona SAM, Borsatto MC. Effect of aPDT on Streptococcus mutans and Candida albicans present in the dental biofilm: Systematic review. Photodiagnosis Photodyn Ther. 2018 Mar; 21: 363366.

42.   Gintovt OI. The use of intraductal photoradiation in the complex treatment of patients with cholangitis of benign etiology: author. dis.cand. Med. Sciences O.I. Gintovt. St. Petersburg, 2008.- p. 18. [In Russ].

43.   Panteleev VS. Photodynamic effects in combination with laser antibiotic therapy in patients with purulent-septic complications. Author. Dis.doctor Med. Sciences V.S. Panteleyev. - Ufa, 2012. - P24-35 [In Russ].

44.   Vasilyev NE, Ogirenko AP. Antimicrobial photodynamic therapy. Laser medicine. - 2002. - V. 6. - №1. - p. 32-38. [In Russ].

45.   Efimova EG, Cheida AA, Garasko EV, et al. Antimicrobial effects of photodynamic therapy. Rus. bioter. journals 2007. No. 1. P. 15 [In Russ].

46.   Deshuk AN. Photodynamic therapy of experimental acute cholecystitis A.N. Deshuk, P.V. Garelik. Surgery News .- 2012.- Vol. 20, No. 5.- P. 3-10. [In Russ].

47.   Kiesslich T, Berlanda J, Plaetzer K, et al. Comparative characterization of the efficiency and cellular pharmacokinetics of Foscan- and Foslip-based photodynamic treatment in human biliary tract cancer cell lines. Photochem Photobiol Sci. 2007 Jun; 6 (6): 619-627.

48.   Cao LQ, Xue P, Lu HW, et al. Hematoporphyrin derivative-mediated photodynamic therapy inhibits tumor growth in human cholangiocarcinoma in vitro and in vivo. Hepatol Res. 2009 Dec; 39(12): 1190-1197.

49.   Wang JB, Liu LX, Pan SH, et al. Therapeutic effect of photodynamic therapy using hemato-porphyrin monomethyl ether (HMME) on human cholangiocarcinoma cell line QBC939. Neoplasma. 2010; 57(1): 79-85.

50.   Kim CH, Chung CW, Choi KH, et al. Effect of 5-aminolevulinic acid-based photodynamic therapy via reactive oxygen species in human cholangiocarcinoma cells. Int J Nanomedicine. 2011; 6: 1357-1363.

51.   Chung CW, Kim CH, Lee HM, et al. Aminolevulinic acid derivatives-based photodynamic therapy in human intra- and extrahepatic cholangiocarcinoma cells. Eur J Pharm Biopharm. 2013 Nov; 85(3 Pt A): 503-510.

52.   Chen YJ, Jiang HT, Cao JY. Influence of Photodynamic Therapy on Apoptosis and Invasion of Human Cholangiocarcinoma QBC939 Cell Line. Chin Med Sci J. 2015 Dec; 30(4): 252-259.

53.   Sirica AE, Zhang Z, Lai GH, et al. A novel «patient-like» model of cholangiocarcinoma progression based on bile duct inoculationof tumorigenic rat cholangiocyte cell lines. Hepatology. 2008 Apr;47(4):1178-1190.

54.   Wong K, Song LM, Wang KK, Zinsmeist AR. Mono-L-aspartyl chlorin e6 (NPe6) and hematoporphyrin derivative (HpD) in photodynamic therapy administered to a human cholangiocarcinoma model. Cancer. 1998; 82: 421-427

55.   Cadamuro M, Brivio S, Stecca T, et al. Animal models of cholangiocarcinoma: What they teach us about the human disease. Clin Res Hepatol Gastroenterol. 2018 Oct; 42(5): 403-415.

56.   Loeuillard E, Fischbach SR, Gores GJ, Rizvi S. Animal models of cholangiocarcinoma. Biochim Biophys Acta Mol Basis Dis. 2018 Apr 5. PII: S0925- 4439(18)30124-8.

57.   Tzerkovsky DA. Multiple-field interstitial photodynamic therapy of subcutaneously transplanted cholangiocellular carcinoma RS-1 in rats. Exp Oncol. 2017 Jul;39(2):117-120.

58.   van Hillegersberg R, Marijnissen JP, Kort WJ, et al. Interstitial photodynamic therapy in a rat liver metastasis model. Br J Cancer 1992; 66: 1005-14.

59.   Rovers JP, Saarnak AE, Molina A, et al. Effective treatment of liver metastases with photodynamic therapy, using the second-generation photosensitizer meta-tetra (hydroxyphenyl) chlorine (mTHPC), in a rat model. Br J Cancer 1999; 81: 600-608.

60.   Douillard S, Olivier D, Patrice T. In vitro and in vivo evaluation of Radachlorin(R) sensitizer for photodynamic therapy. Photochem Photobiol Sci. 2009 Mar; 8(3): 405413.

61.   Wang X, Li J, Li L, Li X. Photodynamic Therapy-Induced Apoptosis of Keloid Fibroblasts is Mediated by Radical Oxygen Species In Vitro. Clin Lab. 2015; 61(9): 1257-1266.

62.   Zhang C, Wang J, Chou A, et al. Photodynamic therapy induces antifibrotic alterations in primary human vocal fold fibroblasts. Laryngoscope. 2018 Sep; 128(9): E323-E331.

63.   Mendoza-Garcia J, Sebastian A, Alonso-Rasgado T, Bayat A. Ex vivo evaluation of the effect of photodynamic therapy on skin scars and striae distensae. Photodermatol photoimmunol photomed. 2015; 31: 239-251.

 

Abstract:

Background: article describes methodology of a selective ophtalmic arterieal infusion (SOAI) ir organ-preserving treatment of children with an intraocular retinoblastoma and demonstrates various ways of delivery of chemotherapeutic agent to a tumor.

Aim: was to increase efficacy of SOAI in treatment of children with intraocular retinoblastoma Material and methods: 289 SOAI procedures to 127 children (143 eyes) have been performed from 2013 to 2017. 2 methods of a SOAI were applied: 1) the microcatheter technique (n=223) - superselective catheterization of an eye artery or collateral branches of an external carotid artery (ECA) at blood flow hemodynamic redistribution; 2) the microballoon technique - balloon-occluder on ipsilateral internal carotid artery (ICA) for prevention of chemoinfusion of brain arteries (n=58). Results: technical success was 96,5%(279 procedures). From 223 procedures with using of a microcatheter infusion was carried out in: a. ophthalmica - 156(70%), a.meningea media - 44 (20%), a.infraorbitalis - 20(11%), a. temp. superficialis - 2, a.facialis - 1. From 58 procedures with using of microballoon - 56 were successful. We didn't manage to put a balloon more distally than the place of an entry of an eye artery in 2 cases. Unsuccessful attempts - 10 cases: failure of catheterization of a femoral artery - in 2, a kinking of the ICA - in 2, a vascular collapse as a result of reaction to injection of contrast agent and/or mechanical impact on ICA - in 2, lack of contrasting of a retina - in 3, an occlusion of an ICA - in 1.

Conclusion: possession and use of various techniques for chemotherapeutic agent delivery to an eye tumor allows to achieve the maximum effect and doesn't depend on anatomy options and blood flow hemodynamic redistribution in main vessels of an eye.

 

References

1.     Abramson D.H., Dunkel I.J., Brodie S.E., et al. A phase I/II study of direct intraarterial (ophthalmic artery) chemotherapy with melphalan for intraocular retinoblastoma initial results. Ophthalmology. 2008;115:1398-404, 1404.e1. Epub 2008 Mar 14.

2.     Abramson D.H., Dunkel I.J., Brodie S.E., et al. Bilateral superselective ophthalmic artery chemotherapy for bilateral retinoblastoma: tandemtherapy. Arch Ophthalmol 2010;128:370-72. AJNR Am J Neuroradiol. 33:1608-14.

3.     Abramson D.H., Dunkel I.J., Brodie S.E., et al.Superselective ophthalmic artery chemotherapy as primary treatment for retinoblastoma (chemosurgery). Ophthalmology. 2010; 117:1623-29.

4.     Abramson D.H. Super selective ophthalmic artery delivery of chemotherapyfor intraocular retinoblastoma: ‘chemosurgery’ the first Stallard lecture. Br J Ophthalmol. 2010; 94: 396-99.

5.     Gobin YP., Dunkel I.J., Marr B.P, et al.Intra-arterial chemotherapy for the management of retinoblastoma: four-year experience. Arch Ophthalmol. 2011;129: 732-37.

6.     Reese A.B., Hyman G.A., Merriam G.R. Jr, et al. Treatment of retinoblastoma by radiation and triethylenemelamine. AMA Arch Ophthalmol 1954; 53:505-13с.

7.     Hyman G.A., Reese A.B. Combination therapy of retinoblastoma with triethylene melamine and radiotherapy. J Am Med Assoc.1956; 162:1368-73.

8.     Meyer F., Zur anatomie der orbitalarteien. Morphologia Jahr. 1887; 12: 414-458.

9.     Hayreh S.S. The ophthalmic artery. III. Branches. British Journal of Ophthalmology. 1962; 46(4):212-247.

10.   Hayreh S.S. The ophthalmic artery: II. Intraorbital course. British Journal of Ophthalmology. 1962; 46(4): 212-247.

11.   Perrini P, Cardia A., Fraser K., Lanzino G. A microsurgical study of the anatomy and course of the ophthalmic artery and its possibly dangerous anastomoses. Journal of Neurosurgery. 2007; 106(1):142-150.

12.   Lang J. and Kageyama I. The ophthalmic artery and its branches, measurements and clinical importance. Surgical and Radiologic Anatomy. 1990; 12(2):83-90.

13.   Hayrehand S.S., Dass R. Theophthalmicartery: I.Origina and intra—cranial and intra—canalicular course. The British Journal of Ophthalmology. 1962; 46(2):65-98.

14.   Louw L. Different ophthalmic artery origins: embryology and clinical significance. Clinical Anatomy. 2015; 28(5): 576- 83.

15.   Hayreh S. S. Orbital vascular anatomy. Eye. 2006; 20(10):1130 -1144.

16.   Naeini R.M., De J., Satow T., Benndorf G. Unilateral agenesis of internal carotid artery with ophthalmic artery arising from posterior communicating artery. American Journal of Roentgenology. 2005; 184(2):571-573.

17.   Shimada K., Kaneko Y, Sato I., Ezure H., Murakami G. Classification of the ophthalmic artery that arises from the middle meningeal artery in Japanese adults. Okajimas Folia Anatomica Japonica. 1995; 72(2-3):163-176.

18.   Lasjaunias P, Vignaud J., Hasso A. N. Maxillary artery blood supply to the orbit: normal and pathological aspects. Neuroradiology. 1975; 9(2): 87-97.

19.   Geibprasert S., Pongpech S., Armstrong D., Krings T. Dangerous extracranial-intracranial anastomoses and supply to the cranial nerves: vessels the neurointerventionalist needs to know. American Journal of Neuroradiology. 2009; 30(8): 1459-1468.

20.   Klufas M.A., Gobin YP., Marr B., Brodie S.E., Dunkel I. J., Abramson D. H. Intra-arterial chemotherapy as a treatment for intraocular retinoblastoma: alternatives to direct ophthalmic artery catheterization. American Journal of Neuroradiology. 2012; 33(8):1608-1614.

21.   Picard L., Vignaud J., Lombardi G., Roland J. Radiological anatomy of the origin of the ophthalmic artery. Modern Problems in Ophthalmology. 1975; 4:164-169.

22.   Hassler W., Zentner J., Voigt K. Abnormal origin of the ophthalmic artery from the anterior cerebral artery: neuroradiological and intraoperative findings. Neuroradiology. 1989; 31(1): 85-87.

23.   Islak C., OgE G., Numan F., Cokyuksel O., Kuday C. Persistent nonmigrated ventral primitive ophthalmic artery. Report on one case. Journal of Neuroradiology. 1994; 21(1):46-49.

24.   Hannequin P, Peltier J., Destrieux C., Velut S., Havet E., Le Gars D. The interoptic course of a unique precommunicating anterior cerebral artery with aberrant origin of Anatomy Research International 7 an ophthalmic artery: an anatomic case report. Surgical and Radiologic Anatomy. 2013; 35(3): 269-271.

25.   Li Y, Horiuchi T., Yako T., Ishizaka S., Hongo K. Anomalous origin of the ophthalmic artery from the anterior cerebral artery. Neurologia Medico-Chirurgica. 2011; 51(8):579-581.

26.   Ogawa A., Tominaga T., Yoshimoto T., Kiyosawa M. Intraorbital ophthalmic artery aneurysm: case report. Neurosurgery. 1992; 31(6): 1102-1104.

27.   Kam C. K., Alvarez H., Lasjaunias P Double internal carotid origin of the ophthalmic artery with ruptured aneurysm of the posterior communicating artery. A case report. Interventional Neuroradiology. 2003; 9(4): 383-388.

28.   Uchino A., Saito N., Kurita H., Ishihara S. Double ophthalmic arteries arising from the internal carotid artery. Surgical and Radiologic Anatomy. 2013; 35(2): 173-175.

29.   Louw L., Steyl J., Loggenberg E. Imaging of dual ophthalmic arteries: identification of the central retinal artery. Journal of Clinical Imaging Science. 2014; 4(1): 40.

30.   Nakata H., Iwata Y Agenesis of the left internal carotid artery with an ophthalmic artery arising from the posterior communicating artery. No Shinkei Geka. 1987; 15(1):57- 62.

31.   Priman J., Christie D. H. A case of abnormal internal carotid artery and associated vascular anomalies. The Anatomical Record. 1959; 134(1):87-95.

32.   Sade B., Tampieri D., Mohr G. Ophthalmic artery originating from basilar artery: a rare variant. American Journal of Neuroradiology. 2004; 25(10):1730-1731.

33.   Schumacher M., Wakhloo A. K. An orbital arteriovenous malformation in a patient with origin of the ophthalmic artery from the basilar artery. American Journal of Neuroradiology. 1994; 15(3):550-553. 

 

Abstract:

Our experience of percutaneous vertebroplasty - one of the most up-to-date methods of vertebral tumors treatment - is presented in the article.

The purpose of the work was to assess vertebroplasty as a method, improving quality of life. In the years 2001-2007 235 vertebroplasty procedures (168 patients) were done in Blokhin's Cancer Research Center. The most common diagnoses were metastases of renal carcinoma, breast carcinoma or multiple myeloma. The main indications for vertebroplasty procedure were chronic pain due to vertebral tumor progression and the loss of vertebral supporting function. Quality of life is shown to improve in the majority of the operated patients.

Relative simplicity of the percutaneous vertebroplasty and high effectiveness of the method allow us to recommend its widespread adoption in clinical practice. 

 

 

Reference

 

1.     Sundaresan S.N., Krol G., DiGiacinto G.V.,Hughes. J. Metastatic tumors of the spine. In: S.N. Sundaresan, H.H. Scmidek, A.L. Schiller et al. Tumors of the Spine. Diagnosis and Clinical Management. Philadelphia: WB Saunders. 1990: 279-304.

2.     Wingo P.A., Ries L.A., Rosenberg H.M., Miller D.S., Edwards B.K. Cancer incidence and mortality, 1973-1995: a report card for the U.S. Cancer. 1998; 1197-1207.

3.     Coleman R., Bone Metastases From BreastCancer and Other Solid Tumors. ASCO 2001, San-Fransisco, May 12-15. Education Book.152-163.

4.     Deramond H., Depriester C., Galibert P. et al. Percutaneous vertebroplasty with polymethylmetacrylate. Technique, indications and results. Radiol. Clin. North. Am. 1998; 36 (3): 533-546.

 

5.     Anselmetti G.C., Corrao G., Patrizia D.M., Tartaglia V. et al. Pain Relief Following Percutaneous Vertebroplasty. Results of Series of 283 Consecutive Patients Treated in Single Institution. Card. Vasc. and Int. Radiol. 2007; 30 (3): 441-447.

 

6.     Weill A., Chiras J., Simon J.M. Spinal metastases: indications for and results of percutaneous injection of acrylic surgical cement. Radiology. 1996; 199: 241-247.

7.     Robertson R.C., Ball R.P. Destructive spine lesions: diagnosis by needle biopsy.J. Bone. Joint. Surg. 1969; 51: 1531-1544. Martin H.E, Ellis E.B. Biopsy by needle puncture and aspiration. Ann. Surg. 1930; 92: 169-181.

 

Abstract:

The article makes an attempt to summarise variants of the PTBD that allows to change perceptions of this procedure as it is not a simple method as it seems in routine usage. A meaningful and reasonable use of PTBD combined with all modern technical possibilities in interventional radiology and professional personnel potential can significantly expand the scope of application for this technology and allows by using «small means» to deal with complicated clinical cases, optimizing the conditions for effective hi-tech medical support. Reducing PTBD options to the «common denominator» can optimize it's planning and accounting, can improve the quality and efficiency and can facilitate the clinical and scientific analysis of the results.

 

References 

1.     Remolar J., Katz S., Rybak B., et al: Percutaneous transhepatic cholangiography. Gastroenterology 1956; 31:39-46.

2.     Ivsin V.G., Jakunin A.Ju., Lukichev O.D. Chreskoghnie diagnosticheskie i ghelcheotvodjaschie vmeshatelsnva u bolnih mehanicheskoy gheltuhoy [Percutaneous diagnostic and zhelcheotvodyaschie intervention in patients with obstructive jaundice]. Tula, 2000; 312. [In Russ].

3.     Molnar W, Stockhum AE: Relief of obstructive jaundice through percutaneous transhepatic catheter - a new therapeutic method. AJR. 1974; 122: 356—367.

4.     Pereiras RV, Rheingold OJ, Huston D, et al: Relief of malignant obstructive jaundice by percutaneous insertion of a permanent prosthesis in the biliary tree. Ann. Intern. Med. 1978; 89: 589.

5.     Kukushkin A.V. Profilaktika i lechenie osloghneniy antegradnih rentgenoendobiliarnih vmeshatelstv u bolnih s mehanicheskoy gheltuhoy opuholevoy etiologii. [Prevention and treatment of complications of antegrade rentgenendobiliary interventions in patients with obstructive jaundice of tumor etiology.] Dissertacia kandidata medicinskih nauk, Moskva, 2005; 233 s. [In Russ].

6.     International classification of procedures in medicine. Volume 1 World Health Organization, Geneva, 1978.

7.     Cheng Y.E, Chen C.L., Huang T.L. Single imaging modality evaluation of living donors in liver transplantation: magnetic resonance imaging. Transplantation 2001; 15: 1527—1533.

8.     Couinaud C. Intrahepatic biliary ducts. In: Couinaud C (ed). Surgical anatomy of the liver revisited. Paris 1989; 61—74.

9.     Couinaud C. (translated by Nimura Y.) Couinaud’s surgical anatomy of the liver. Tokyo: Igaku Shoin 1996; 1.

10.   Gadzijev E.M., Ravnik D. Atlas of applied internal liver anatomy. Springer, Vienna New York Heidelberg Berlin Tokyo 1996.

11.   Healey J.E., Schroy PC. Anatomy of the biliary ducts within the human liver. Arch. Surg. 1953; 66: 599—616.

12.   Ishiyama S., Yamada Y., Narishima Y. et al. Surgical anatomy of the hilar bile duct carcinoma (in Japanese). Tan to Sui (J.Biliary Tract and Pancreas) 1999; 20: 811—829.

13.   Kawarada Y., Das B.C., Onishi H. et al. Surgical anatomy of the bile duct branches of the medial segment (B4) of the liver in relation to hilar carcinoma. J Hepatobiliary Pancreat Surg. 2000; 7: 480—485.

14.   Kawarada Y., Das B.C., Taoka H. Anatomy of the hepatic hilar area: the plate system. J. Hepatobiliary Pancreat. Surg (2000); 7: 580—586.

15.   Kida H., Uchimura M., Okamoto K. Intrahepatic architecture of bile and portal vein (inJapanese). Tan to Sui (J Biliary Tract and Pancreas) 1987; 8: 1—7.

16.   Mizumoto R., Suzuki H. Surgical anatomy of the hepatic hilum with special reference to the caudate lobe. World J. Surg. 1988; 12: 2—10.

17.   Nimura Y., Hayakawa N., Kamiya J. Clinical significance of selective cholangiography from the viewpoint of liver segment concept. Shokakibyo Gaku no Saikin no Shinpo. Tokyo 1986; 35—36.

18.   Smadja C., Blumgart L.H. The biliary tract and the anatomy of biliary exposure. In: Blumgart L.H., ed. Surgery of the liver and biliary tract; 2nd ed. Edinburgh: Churchill Livingstone 1994; 1: 11—24.

19.   Semenkov A.V., Bekbauov S.A., Eilin A.V. Anatomiya vnutripechenochnih ghelchnih protokov, variantnost stroeniya [Anatomy of the intrahepatic bile ducts, the variability of the structure]. Hirurgiya, 2009, 8, 67—72 [in russ].

20.   Wong J.H., Krippaehne W.W., Elechter W.S. Percutaneous transhepatic biliary decompression: results and complication in 30 patients. Am. J. Surg. 1984; 147: 615—617.

21.   Berquist T.H., May G.R., Johnson CM, Adson MA, Thistle J.L. Percutaneous biliary decompression: internal and external drainage in 50 patients. Am. J. Roentgenol. 1981; 136: 901—906.

22.   Clark RA, Mitehell SE, Colley DP, Alexander E: Percutaneous catheter biliary decompression. Am J. Roentgenol. 1981; 137:503—509.

23.   Eerucci J.T. Jr., Mueller PR., Harbin W.P.: Percutaneous transhepatic biliary drainage. Technique, results and applications. Radiology. 1980; 135: 1—13.

24.   Hamlin J. A., Friedman M., Stein M.G., Bray J.E: Percutaneous biliary drainage: complications of 188 consecutive catheterizations. Radiology. 1986; 158:199—202.

25.   Reimann J.E. Complications of percutaneous bile drainage. In: Classen, M., Geenen J., Kawai K.: Non surgical Biliary Drainage, Berlin: Springier. 1984; 29—35.

26.   Yee A.C.N., Ho Ch. S. Complications of percutaneous biliary drainage: benign vs. malignant diseases. AJR. 1987; 148: 1207—1209.

27.   Mueller PR., van Sonnenberg E., Eerrucci J.T. Jr.: Percutaneous biliary drainage. Technical and catheter related problems in 200 procedures. Am J. Roentgenol. 1982; 138:17—23.

28.   Passariello R., Rossi P., Simonetti G., Pavone P.: Cooperative study of percutaneous biliary drainage: statistical data on 731 patients. Radiology, in press, 1984.

29.   Bismuth H. Surgical anatomy and anatomical surgery of the liver. World J. Surg.. 1982; 6: 3—12.

Regional intra-arterial chemotherapy and chemoembolization in the treatment of liver tumors



For quoting:
Dolgushin B.I., Virshke E.R., Trofimova I.A., Cherkasov V.A., Sergeeva O.N. "Regional intra-arterial chemotherapy and chemoembolization in the treatment of liver tumors ". Journal Diagnostic & interventional radiology. 2009; 3(2); 103-105.


 

 

Article exists only in Russian.



 

Article exists only in Russian.

 

Abstract:

Aim. Was to describe the efficiency of conservative treatment of retinoblastoma (RB) by an association of local chemotherapy (LCT) as an alternative method for external beam radiation (EBR) therapy and enucleation. Also to reduce the local and systemic side effects of chemotherapy.

Materials and methods. Seven children (11 eyes) had intraocular RB. All of them underwent LCT at the Institute of pediatric oncology and hematology of the N.N. Blokhin Russian Cancer Research Center between February and 2011. There were two methods of LC -selective intra-arterial chemotherapy (Institute of clinical oncology of the N. N. Blokhin Russian Cancer Research Center) and intravitrea chemotherapy by melphalan.LCT was made after systemic chemotherapy in4of8 patients with advanced RB with clinica stages T2a or group С (n = 1), T2b or group D (n = 3), T2c or group E (n = 3) as an alternative to EBR therapy Other 4 of 8 patients were treated with LCT as alternative to enucleation because of new retinal, subretinal tumors and vitreous seeding after initial treatment - systemic chemotherapy with laser treatment or in combination with brachytherapy and/or EBR therapy. LCT was combined with brachytherapy (106Ru + 10^о) in one case (S. Fyodorov Eye Microsurgery Complex)

Results. Due to using of alternative conservative RB treatment we have saved 8 children with 10 of 11 eyes with indications for EBR therapy or enucleation. There were not systemic side effects of LCT. Ophthalmic complications were minimal, including lid and face hyperemia after intra-arterial chemotherapy.

Conclusion. LCT with melphalan has shown high effectiveness as a method of globe-conserving treatment of locally spread RB with a minimum of immediate complications. A small number of observations and the maximum period of observation 7 months do not allow to reliably estimate the long-term results of treatment that requires further research.  

 

References 

1.    Shields C.L. et al. Chemoreduction plus focal therapy for retinoblastoma: factors predictive of need for treatment with external beam radiotherapy or enucleation. Am. J. Ophthalmol. 2002; 133 (5): 657-664.

 

2.    Shields C.L. et al. The international Classification of Retinoblastoma predicts chemoreduction success. Ophthalmol. 2006; 113: 2276-2280.

 

3.    Shields C.L. et al. Chemoreduction for unilateral retinoblastoma. А. Ophthalmol. 2002;120: 1652-1658.

 

4.    Shields C.L. Development of new retinoblastomas after 6 cycles of chemo-reduction for retinoblastoma in 162 eyes of 106 consecutive patients. A. Ophthalmol. 2003;121: 1571-1576.

 

 

5.    Jehanne M. et al. Analisis of ototoxicity in young children receiving carboplatin in the context of conservative management of unilateral or bilateral retinoblastoma. Pediat. Bl. Cancer. 2009; 52: 637-643.

 

 

6.    Bayer E.. et al. Unilateral retinoblastoma with acquired monosomy 7 and secondary acute myelomonosytic leukemia. Cancer Genet. Cytogenet. 1998; 105: 79-82.

 

 

7.    Yamane T., Kaneko A., Moori M. The technique of ophthalmic arterial infusion therapy for patients with intraocular retinoblastoma. Int. J.  Clin.  Oncol. 2004; 9: 69-73.

 

 

8.    Yamane T. Ophthalmic arterial injection therapy for retinoblastoma patients by using melphalan. Technique and eye preservation rates. T. Yamane, S. Suzuki, A. Kaneko, M. Mohri. ISOO Meeting 2009. Cambridge, UK. Abstracts book. 2009; 8-12: 283.

 

 

9.    Kane A., Suzuki S. Eye-preservation treatment of retinoblastoma with vitreous seeding. Jpn. J.Clin. Oncol. 2003; 33 (12): 601-607.

 

 

10.  Abramson D.H., Frank C.M., Dunkel I.J. A phase I/II study of subconjunctival carboplatin for intraocular retinoblastoma. Ophthalmology.1999; 106: 1947-1950.

 

 

11.  Villablanca J.G., Jubran R., Murphree A.L. Phase I study of subtenon carboplatin I with systemic high dose carboplatin / etoposide / vincristine (CEV) for eyes with disseminated intraocular retinoblastoma (RB). Proceedings of the XIII Biannual Meeting of ISGED and the X International Symposium on Retinoblastoma. USA Fort Lauderdale, Fla. 2001; 4.

 

12.  Kaneko A. et al. Our recent modifications of local chemotherapies for preservation of eyes with retinoblastoma. ISOO Meeting. Cambridge, UK. Abstracts book. 2009; 8-12: 281.

13.  Abramson D.H. et al. A phase I/II study of direct intra-arterial (ophthalmic artery) chemotherapy with melphalan for intraocular retinoblastoma initial results. Ophthalmology. 2008;115: 1398-1404.

14.  Abramson D.H. et al. Superselective ophthalmic artery chemotherapy as primary treatment for retinoblastoma (chemosurgery). Ophthalmology. 2010; 117: 1623-1629.

15.  Shields C.L., Shields J.A. Intraarterial chemotherapy for retinoblastoma the beginning of a long journey. Clin. Exper. Ophthalmol. 2010; 38: 638-643.

16.  Suzuki S., Kaneko A. Ocular and systemic prognosis of selective ophthalmic arterial injection for intraocular retinoblastoma. ISOO Meeting. Cambridge, UK. Abstracts book. 2009; 8-12: 283.

 


 

Article exists only in Russian.

ANGIOLOGIA.ru (АНГИОЛОГИЯ.ру) - портал о диагностике и лечении заболеваний сосудистой системы